13 research outputs found

    2-Server PIR with sub-polynomial communication

    Full text link
    A 2-server Private Information Retrieval (PIR) scheme allows a user to retrieve the iith bit of an nn-bit database replicated among two servers (which do not communicate) while not revealing any information about ii to either server. In this work we construct a 1-round 2-server PIR with total communication cost nO(loglogn/logn)n^{O({\sqrt{\log\log n/\log n}})}. This improves over the currently known 2-server protocols which require O(n1/3)O(n^{1/3}) communication and matches the communication cost of known 3-server PIR schemes. Our improvement comes from reducing the number of servers in existing protocols, based on Matching Vector Codes, from 3 or 4 servers to 2. This is achieved by viewing these protocols in an algebraic way (using polynomial interpolation) and extending them using partial derivatives

    Private Database Queries Using Quantum States with Limited Coherence Times

    Full text link
    We describe a method for private database queries using exchange of quantum states with bits encoded in mutually incompatible bases. For technology with limited coherence time, the database vendor can announce the encoding after a suitable delay to allow the user to privately learn one of two items in the database without the ability to also definitely infer the second item. This quantum approach also allows the user to choose to learn other functions of the items, such as the exclusive-or of their bits, but not to gain more information than equivalent to learning one item, on average. This method is especially useful for items consisting of a few bits by avoiding the substantial overhead of conventional cryptographic approaches.Comment: extended to generalized (POVM) measurement

    Shortest Path Computation with No Information Leakage

    Get PDF
    Shortest path computation is one of the most common queries in location-based services (LBSs). Although particularly useful, such queries raise serious privacy concerns. Exposing to a (potentially untrusted) LBS the client's position and her destination may reveal personal information, such as social habits, health condition, shopping preferences, lifestyle choices, etc. The only existing method for privacy-preserving shortest path computation follows the obfuscation paradigm; it prevents the LBS from inferring the source and destination of the query with a probability higher than a threshold. This implies, however, that the LBS still deduces some information (albeit not exact) about the client's location and her destination. In this paper we aim at strong privacy, where the adversary learns nothing about the shortest path query. We achieve this via established private information retrieval techniques, which we treat as black-box building blocks. Experiments on real, large-scale road networks assess the practicality of our schemes.Comment: VLDB201

    Reed-Muller codes for random erasures and errors

    Full text link
    This paper studies the parameters for which Reed-Muller (RM) codes over GF(2)GF(2) can correct random erasures and random errors with high probability, and in particular when can they achieve capacity for these two classical channels. Necessarily, the paper also studies properties of evaluations of multi-variate GF(2)GF(2) polynomials on random sets of inputs. For erasures, we prove that RM codes achieve capacity both for very high rate and very low rate regimes. For errors, we prove that RM codes achieve capacity for very low rate regimes, and for very high rates, we show that they can uniquely decode at about square root of the number of errors at capacity. The proofs of these four results are based on different techniques, which we find interesting in their own right. In particular, we study the following questions about E(m,r)E(m,r), the matrix whose rows are truth tables of all monomials of degree r\leq r in mm variables. What is the most (resp. least) number of random columns in E(m,r)E(m,r) that define a submatrix having full column rank (resp. full row rank) with high probability? We obtain tight bounds for very small (resp. very large) degrees rr, which we use to show that RM codes achieve capacity for erasures in these regimes. Our decoding from random errors follows from the following novel reduction. For every linear code CC of sufficiently high rate we construct a new code CC', also of very high rate, such that for every subset SS of coordinates, if CC can recover from erasures in SS, then CC' can recover from errors in SS. Specializing this to RM codes and using our results for erasures imply our result on unique decoding of RM codes at high rate. Finally, two of our capacity achieving results require tight bounds on the weight distribution of RM codes. We obtain such bounds extending the recent \cite{KLP} bounds from constant degree to linear degree polynomials

    Refuting Learning Revisited

    No full text
    We consider, within the framework of inductive inference, the concept of refuting learning as introduced by Mukouchi and Arikawa, where the learner is not only required to learn all concepts in a given class but also has to explicitly refute concepts outside the class
    corecore